7009

A particle is projected vertically upwards from the point p. At the same instant a second particle is let fall vertically from q. The particles meet at r after 2 seconds. The particles have equal speeds when they meet at r.

Prove that |pr| = 3|rq|.

$$v = u + ft$$

$$v = 0 + 2g$$

$$v = u - 2g$$

$$\Rightarrow 2v = u$$

$$v^{2} = u^{2} + 2fs$$

$$v^{2} = 0 + 2g|qr|$$

$$v^{2} = u^{2} - 2g|pr|$$

$$v^{2} = 4v^{2} - 2g|pr|$$

$$3v^{2} = 2g|pr|$$

$$3(2g|qr|) = 2g|pr|$$

$$3|qr| = |pr|$$

or
$$v = u + ft$$

$$v = 0 + 2g$$

$$pr$$

$$v = u - 2g$$

$$\Rightarrow u = 4g$$

$$v^{2} = u^{2} + 2 fs$$

$$4g^{2} = 0 + 2g|qr|$$

$$\Rightarrow |qr| = 2g$$

pr
$$4g^{2} = 16g^{2} - 2g|pr|$$
$$\Rightarrow |pr| = 6g$$

3|qr| = |pr|