9. (a) A uniform cylinder of height 10 cm floats vertically with half of its height immersed in a container of mercury. The relative density of mercury is 13.6. Water is then poured on top of the mercury until the cylinder is covered.

How far does the cylinder rise?

	B = W
	$\frac{\frac{1}{2} W(13.6)}{s} = W$
	s = 6.8
	$B_w + B_m = W$
$\frac{xW}{0.1}(1)$	(0.1-x)W (13.6)
6.8	$\phantom{00000000000000000000000000000000000$
	\Rightarrow x = 0.054
Cylinder rises	s 0.004 m or 0.4 cm.

5

5

25

$$B = W$$

$$13600(\frac{1}{2}V)g = \rho V g$$

$$\rho = 6800$$

$$B_{w} + B_{m} = W$$

$$1000(Ax)g + 13600A(0.1-x)g = 6800A(0.1)g$$

$$\Rightarrow x = 0.054$$

$$Cylinder rises 0.004 m or 0.4 cm.$$