- (b) A uniform disc of mass m and radius r rolls from rest, without sliding, 30 m down a plane inclined at an angle of 30° to the horizontal.
 - (i) Find the linear speed of the disc after rolling 30 m down the plane.
 - (ii) Find the time taken for the disc to roll 30 m down the plane, correct to two places of decimals.
 - (iii) The disc is now replaced by a hoop of mass m and radius r.

 The hoop rolls from rest, without sliding, 30 m down the plane.

 Show that the ratio of the acceleration down the plane of the hoop to that of the disc is $\frac{3}{4}$.

(i) Gain in KE = Loss in PE
$$\frac{1}{2} \text{ m } v^2 + \frac{1}{2} \text{ I} \omega^2 = \text{m g h}$$

$$\frac{1}{2} \text{ m } v^2 + \frac{1}{2} \frac{1}{2} \text{ m } r^2 \right\} \omega^2 = \text{m g } \left\{ 30 \sin 30 \right\}$$

$$\frac{1}{2} \text{ m } v^2 + \frac{1}{4} \text{ m } v^2 = 15 \text{ m g}$$

$$v^2 = 20g$$

$$v = \sqrt{20g} \text{ or } 14 \text{ ms}^{-1}$$
5

(ii)

$$v^{2} = u^{2} + 2 a s$$

$$196 = 0 + 2 a (30)$$

$$a = \frac{196}{60} \text{ or } \frac{g}{3}$$

$$v = u + a t$$

$$14 = 0 + \frac{196}{60} t$$

$$t = \frac{840}{196} = 4.29 \text{ seconds}$$

2000

(iii)
$$t = \frac{640}{196} = 4.29 \text{ seconds}$$

$$\frac{1}{2} \text{ m } v^2 + \frac{1}{2} \{\text{m } r^2 \} \omega^2 = \text{m } g \{30 \sin 30 \}$$

$$\frac{1}{2} \text{ m } v^2 + \frac{1}{2} \text{ m } v^2 = 15 \text{ m } g$$

$$v^2 = 15 g$$

$$v^2 = u^2 + 2 \text{ a } s$$

$$15 g = 0 + 2 \text{ a } (30)$$

$$a = \frac{147}{60} \text{ or } \frac{g}{4}$$

$$\frac{\text{acc. of hoop}}{\text{acc. of disc}} = \frac{\frac{1}{4}g}{\frac{1}{3}g} = \frac{3}{4}$$

5