- 7. (a) A uniform ladder [pq], of length 2l and weight W, is in equilibrium with end p against a rough horizontal floor and end q against a smooth vertical wall. The ladder makes an angle $tan^{-1} 2$ with the floor.
 - (i) Show that the least possible value for μ , the coefficient of friction between the ladder and the floor, is $\frac{1}{4}$.
 - (ii) If, however, $\mu = \frac{1}{3}$, find, in terms of l, the distance from p of the highest point on the ladder at which a man of weight 2W can stand without the ladder slipping.

5

5

5

5

5

25

(i) $\left\{ \text{diagram} \right\} \quad \text{or} \quad \left\{ R_1 = \mu R \quad \text{and} \quad R = W \right\}$ Moments about p :

$$W(\ell \cos \alpha) = R_1 (2\ell \sin \alpha)$$

$$W = R_1 (2\tan \alpha)$$

$$\Rightarrow R_1 = \frac{1}{4}W \quad \text{and} \quad \mu = \frac{1}{4}$$

(ii) $R_1 = \mu R \quad (= \frac{1}{3}R = W)$ R = 3WMoments about p:

$$W(\ell \cos \alpha) + 2W(x \cos \alpha) = R_1(2\ell \sin \alpha)$$

$$W\ell + 2Wx = R_1(2\ell \tan \alpha)$$

$$= 4W\ell$$

$$\Rightarrow x = \frac{3\ell}{2}$$

