7000 (b)

A smooth sphere A collides with an identical smooth sphere B which is at rest. The velocity of A before impact makes an angle α with the line of centres at impact, where $0^{\circ} \le \alpha < 90^{\circ}$.

The coefficient of restitution between the spheres is $\frac{1}{2}$.

Show that the angle θ through which the path of A is deflected is given by

$$\tan \theta = \frac{3 \tan \alpha}{1 + 4 \tan^2 \alpha} .$$

PCM
$$m(u\cos\alpha) + m(0) = mv_1 + mv_2$$

$$NEL \qquad v_1 - v_2 = -\frac{1}{2}(u\cos\alpha - 0)$$

$$\Rightarrow$$
 $v_1 = \frac{u\cos\alpha}{4}$

$$\tan\beta = \frac{u \sin\alpha}{\frac{1}{4} u \cos\alpha} = 4 \tan\alpha$$

$$\tan \theta = \tan(\beta - \alpha) = \frac{\tan \beta - \tan \alpha}{1 + \tan \beta \tan \alpha}$$

$$= \frac{4\tan \alpha - \tan \alpha}{1 + 4\tan \alpha \tan \alpha}$$

$$= \frac{3\tan \alpha}{1 + 4\tan^2 \alpha}$$

5