2000 4. (b)

A smooth wedge of mass 2m and slope 45° is placed on a smooth horizontal surface. A particle of mass m is placed on the inclined face of the wedge. The system is released from rest.

- (i) Show on separate diagrams the forces acting on the wedge and the particle.
- (ii) Show that the acceleration of the wedge is $\frac{g}{5}$ m/s².
- (iii) Find the speed of the particle relative to the wedge, when the speed of the wedge is 1 m/s.

(ii)
$$R \sin 45 = 2 \text{ m a}$$

$$mg \cos 45 - R = m a \sin 45$$

$$\frac{mg}{\sqrt{2}} - 2\sqrt{2} \text{ m a} = m \frac{a}{\sqrt{2}}$$

$$\Rightarrow a = \frac{1}{5}g$$
5

5

5

(iii)
$$\frac{mg \sin 45 = m(b - a \cos 45)}{\sqrt{2}} \geqslant b = \frac{6g}{5\sqrt{2}}$$

Wedge: v = u + at $1 = 0 + \frac{1}{5}gt \implies t = \frac{5}{g}$ Particle: v = u + bt $v = 0 + \frac{6g}{5\sqrt{2}} \left(\frac{5}{g}\right) = \frac{6}{\sqrt{2}} \text{ or } 3\sqrt{2}$

30

5