- 999
- 6 (b) A particle of mass 0.5 kg at rest on a smooth horizontal table is attached to two points p and q, which are 1.2 m apart, by two light elastic strings. The string attached to p has a natural length 0.4 m and elastic constant 75 N/m. The string attached to q has a natural length 0.6 m and elastic constant 50 N/m.
  - (i) Find the equilibrium position.
  - (ii) Prove that if the particle is displaced in the direction pq, through such a distance that neither string goes slack and is then released, it moves with simple harmonic motion.



(i) 
$$T_1 = T_2$$
 5

 $k_1(x) = k_2(0.2 - x)$  5

 $75 x = 50(0.2 - x)$  5

 $3 x = 0.4 - 2 x$ 
 $x = 0.08$  5

$$\Rightarrow \text{ distance } = 0.48 \text{ m from p}$$

(ii) Force in direction of x increasing = 
$$T_2 - T_1$$
 5
$$= 50 (0.12 - x) - 75 (0.08 + x)$$
 5
$$= 6 - 50x - 6 - 75x$$

$$= -125x$$

$$= \frac{\text{Force}}{\text{Mass}} = \frac{-125 \text{ x}}{0.5} = -250 \text{ x}$$
 5

$$\Rightarrow$$
 S.H.M. about  $x = 0$  with  $\omega = \sqrt{250}$