- 2 (b) Two ships A and B move with constant speeds 48 km/h and 60 km/h respectively. At a certain instant ship B is 30 km west of A and is travelling due south. Find
 - (i) the direction ship A should steer in order to get as close as possible to ship B
 - (ii) the shortest distance between the ships.

(i)
$$V_{AB} = V_A - V_B$$
 (or diagram with V_{AB})
$$V_{AB} = (-48\cos\alpha i - 48\sin\alpha j) - (-60j)$$

$$= (-48\cos\alpha)i + (60 - 48\sin\alpha j)$$

$$\tan\beta = \frac{V_{AB}\sin\beta}{V_{AB}\cos\beta} = \frac{60 - 48\sin\alpha}{48\cos\beta}$$

$$= 0 \qquad \text{when } 16\cos^2 \alpha = 20\sin \alpha - 16\sin^2 \alpha$$

$$\Rightarrow \qquad \sin \alpha = \frac{4}{5} \qquad \left(\text{and } \tan \beta = \frac{3}{4}\right)$$

(ii)
$$|BX| = 30 \sin \beta$$

= 30 (0.6)
= 18 km