- 10 (b) The rocket engine of a 12 tonne missile produces a thrust of 180.1 kN. The missile is launched in a vertical direction. The air resistance is v² N where v is the speed of the missile.
 - (i) Find the speed of the missile after 30 seconds.
 - (ii) Find the percentage error in this speed if air resistance is ignored.

(i)	Force =	mass x acceleration	
	$180100 - 12000 g - v^2 =$	$12000 \frac{dv}{dt}$	5
	$62500 - v^2 =$	$12000 \frac{dv}{dt}$	
	$\int_0^{80} dt =$	12000 $\int \frac{dv}{250^2 - v^2}$	10
	30 =	$(12000) \left(\frac{1}{500}\right) \ell n \left \frac{250 + \mathrm{v}}{250 - \mathrm{v}} \right $	
	$\ell n \left \frac{250 + v}{250 - v} \right =$	1.25	
	v =	138.64	5

(ii) Air resistance is omitted

$$62500 = 12000 f$$

$$f = 5.2083$$

$$v = u + ft$$

$$= 0 + 5.2083 (30)$$

$$= 156.25$$

$$error = 156.25 - 138.64 = 17.61$$

$$Percentage error = \frac{17.61 \times 100}{138.64} = 12.7 \%$$