- 4. (a) A particle A, of mass m kg, rests on a smooth horizontal table. It is connected by a light inextensible string which passes over a light, smooth, fixed pulley to a second particle B, of mass 2 kg, which hangs freely under gravity. The system starts from rest with A at a distance of 1 metre from the pulley.
 - (i) Calculate the acceleration of A.
 - (ii) If A reaches the pulley in $\frac{5}{7}$ seconds, find m.

$$\begin{array}{ccc}
\hline
1 & T = ma \\
\hline
2 & 2g - T = 2a \\
\hline
Add! & 2g = (2+m) a \\
\hline
- & a = \left(\frac{2}{2+m}\right)g
\end{array}$$

$$U = 0$$

$$S = 1$$

$$C = \left(\frac{2}{2+m}\right)g$$

$$C = \frac{5}{7}$$

$$S = ut + \frac{1}{2}at$$

$$1 = 0 + \frac{1}{2}(\frac{21}{2+m})g(\frac{25}{49})$$

$$1 = \frac{1}{2+m}(9.8)(\frac{25}{49})$$

$$1 = \frac{245}{49(2+m)} \Rightarrow 1 = \frac{5}{2+m}$$

$$1 = \frac{5}{2+m}$$