2009 HL

5. (a)

A smooth sphere P, of mass m kg, moving with speed 2u m/s collides <u>directly</u> with a smooth sphere Q, of mass 2m kg, moving in the same direction with speed u m/s.

The coefficient of restitution between the spheres is e.

- (i) Find, in terms of *e*, the speed of each sphere after the collision.
- (ii) Prove that the speed of Q increases after the collision.

(iii) Find the value of e if the speed of P after the collision is
$$\frac{10u}{9}$$
 m/s.
(iii) Find the value of e if the speed of P after the collision is $\frac{10u}{9}$ m/s.
(i) PCM $u_1 = 2u$, $u_1 = 2u$, $u_1 = m$, v_1
(i) PCM $m(2u) + 2m(u) = mv_1 + 2mv_2$ (D)
(i) PCM $m(2u) + 2m(u) = mv_1 + 2mv_2$ (D)
(i) PCM $m(2u) + 2m(u) = mv_1 + 2mv_2$ (D)
(ii) $v_1 - v_2 = -e(2u - u)$ (E)
(iii) $v_1 = \frac{u(4-2e)}{3}$
(iii) $v_1 = \frac{u(4-2e)}{3}$
(iii) $v_2 = \frac{4u + 4e - 3ue}{3}$
(iii) $v_1 = \frac{u(4+e)}{3}$
(iii) $v_1 = \frac{u(4-2e)}{3}$
(iii) $v_1 = \frac{10u}{9} = \frac{u(4-2e)}{3}$
(iii) $v_1 = \frac{1}{3}$
(i) $v_2 = 3(u-2e)$

Applied Mathematics

10 = 12-60

-2 = -6e-2 = e-6 = e-5 = e