2001 HL

5.

- A uniform smooth sphere of mass 2 kg and moving with speed u m/s collides **(a)** with another smooth sphere of mass 3 kg which is at rest. The velocity of the sphere of mass 2 kg before impact makes an angle of 45° with the line of centres at impact. The coefficient of restitution between the spheres is *e*.
 - (i) Find, in terms of e and u, the speed of each sphere after the collision.
 - If the sphere of mass 2 kg makes an angle $\tan^{-1} 10$ with the line of **(ii)** centres after impact, find e.

5

5

5

PCM
$$2\left(\frac{u}{\sqrt{2}}\right) + 3(0) = 2v_1 + 3v_2$$

NEL $v_1 - v_2 = -e\left(\frac{u}{\sqrt{2}}\right)$

NEL

$$\Rightarrow$$
 v₁ = $\frac{u}{5\sqrt{2}}(2-3e)$ and v₂ = $\frac{u}{5\sqrt{2}}(2+2e)$

Speed of first sphere = $\sqrt{\left\{\frac{u}{5\sqrt{2}}(2-3e)\right\}^2 + \left\{\frac{u}{\sqrt{2}}\right\}^2}$

Speed of second sphere = $\frac{u}{5\sqrt{2}}(2+2e)$

$$10 = \frac{\frac{u}{\sqrt{2}}}{\frac{u}{5\sqrt{2}}(2-3e)} \text{ or } 10 = \frac{\frac{u}{\sqrt{2}}}{-\frac{u}{5\sqrt{2}}(2-3e)} 5$$

$$\Rightarrow e = \frac{1}{2} \text{ or } e = \frac{5}{6} 5$$