8. (a) Prove that the moment of inertia of a uniform square lamina of mass m and side 2ℓ about an axis through its centre parallel to one of its sides is $\frac{1}{3}m\ell^2$.

Let $M = mass per unit area$	i ba.	
mass of element = $M\{2\ell dx\}$	S) Y	
moment of inertia of the element = $M{2\ell dx}x^2$	5	
moment of inertia of the lamina = $2\ell M \int_{-\ell}^{\ell} x^2 dx$	5	
$=2\ell\mathbf{M}\left[\frac{x^3}{3}\right]_{-\ell}^{\ell}$	5	
$=4\mathrm{M}\frac{\ell^4}{3}$,
$=\frac{1}{2}m\ell^2$	5	20