6. (a) The distance, x, of a particle from a fixed point, O, is given by $x = a \sin(\omega t + \varepsilon)$

where a, ω and ε are positive constants.

(i) Show that the motion of the particle is simple harmonic.

A particle moving with simple harmonic motion starts from a point 1 m from the centre of the motion with a speed of 9.6 m s⁻¹ and an acceleration of 16 m s⁻².

(ii) Calculate a, ω and ε .

(i)
$$x = a\sin(\omega t + \varepsilon)$$

$$\dot{x} = a\omega\cos(\omega t + \varepsilon)$$

$$\ddot{x} = -a\omega^2 \sin(\omega t + \varepsilon)$$

$$=-\omega^2 x$$

(ii)
$$\ddot{x} = \omega^2 x$$

$$16 = \omega^2(1)$$

$$\Rightarrow \omega = 4 \text{ rad s}^{-1}$$

$$\dot{x} = a\omega\cos(\omega t + \varepsilon)$$

$$9.6 = a(4)\cos\varepsilon$$

$$\Rightarrow a\cos\varepsilon = 2.4$$

$$x = a\sin(\omega t + \varepsilon)$$

$$1 = a \sin \varepsilon$$

$$\frac{a\sin\varepsilon}{a\cos\varepsilon} = \frac{1}{2.4}$$

$$\tan \varepsilon = \frac{5}{12} \Rightarrow \varepsilon = 0.395 \text{ rad}$$

$$a = \frac{1}{\sin 0.395} = 2.6 \,\mathrm{m}$$

5

5 | 25