A plane is inclined at an angle α to the horizontal. A particle is projected down the plane with initial speed of 10 m s⁻¹ at an angle 45° to the inclined plane. The plane of projection is vertical and contains the line of greatest slope.

speed $\frac{1}{\alpha}$ $\frac{1}{\alpha}$

The particle strikes the plane at Q with a landing angle θ where $\tan \theta = \frac{1}{4}$.

- (i) Find the value of α .
- (ii) If the magnitude of the rebound velocity at Q is $5\sqrt{33}$, find the value of e, the coefficient of restitution.

(i)
$$r_{j} = 0$$

$$0 = 10 \sin 45.t - \frac{1}{2}g \cos \alpha t^{2}$$

$$\Rightarrow t = \frac{10\sqrt{2}}{g \cos \alpha}$$

$$5$$

$$v_{i} = 10 \cos 45 + g \sin \alpha \left(\frac{10\sqrt{2}}{g \cos \alpha}\right)$$

$$= 5\sqrt{2} + 10\sqrt{2} \tan \alpha$$

$$v_{j} = 10 \sin 45 - g \cos \alpha \left(\frac{10\sqrt{2}}{g \cos \alpha}\right)$$

$$= -5\sqrt{2}$$

$$\tan \theta = \frac{-v_{j}}{v_{i}}$$

$$\frac{1}{4} = \frac{5\sqrt{2}}{5\sqrt{2} + 10\sqrt{2} \tan \alpha}$$

(ii)
$$v_{i} = 20\sqrt{2}$$

$$v_{j} = 5e\sqrt{2}$$

$$5\sqrt{33} = \sqrt{(20\sqrt{2})^{2} + (5e\sqrt{2})^{2}}$$

$$\Rightarrow e = \frac{1}{\sqrt{2}}$$

 $\tan \alpha = 1.5$ \Rightarrow

25

5

5