8. (a) Prove that the moment of inertia of a uniform rod of mass m and length 2ℓ about an axis through its centre perpendicular to the rod is $\frac{1}{3}m\ell^2$.

Let
$$M = mass per unit length$$

mass of element =
$$M\{dx\}$$

moment of inertia of the element
$$= M\{dx\}x^2$$

moment of inertia of the rod =
$$M \int_{\ell}^{\ell} x^2 dx$$

$$= M \left[\frac{x^3}{3} \right]_{-\ell}^{\ell}$$

$$=\frac{2}{3}$$
 M ℓ^3

$$=\frac{1}{3}$$
 m ℓ^2

5