- 6. The distance, x, of a particle from a fixed point, o, is given by (a) $x = a\cos(\omega t + \varepsilon)$ where a, ω and ε are constants.
 - (i) Show that the motion of the particle is simple harmonic.

A particle moving with simple harmonic motion starts from a point 5 cm from the centre of the motion with a speed of 1 cm/s.

- (ii) The period of the motion is 11 seconds. Find the maximum speed of the particle, correct to two decimal places.
- (*i*) $x = a\cos(\omega t + \varepsilon)$ $\dot{x} = -a\omega \sin(\omega t + \varepsilon)$ $\ddot{x} = -a\omega^2 \cos(\omega t + \varepsilon)$ $=-\omega^2 x$
- 5 \Rightarrow S.H.M. about x = 0. 5 (ii) Period = 11
- $\frac{2\pi}{\omega} = 11$ $\omega = \frac{2\pi}{11} \quad \text{or } \frac{4}{7}$
 - x = 5, $t = 0 \implies 5 = a \cos \varepsilon$ $v = \omega \sqrt{a^2 - x^2}$ v = 1, $t = 0 \implies 1 = -a\omega \sin \varepsilon$
 - $\cos \varepsilon = \frac{5}{a} \Rightarrow \sin \varepsilon = \frac{\sqrt{a^2 25}}{a}$ $\Rightarrow 1 = -a \left(\frac{4}{7}\right) \frac{\sqrt{a^2 - 25}}{a}$ a = 5.3
 - $v_{\text{max}} = \omega a = \frac{4}{7} \times 5.3$ $= 3.03 \, \text{cm/s}.$