4 **(b)** A mass m_1 kg is at rest on a smooth horizontal table. It is attached to a light inextensible string. The string, after passing over a small fixed pulley at the edge of the table, passes under a small moveable pulley C, of mass m_2 kg. The string then passes over a smooth fixed pulley and supports a mass of 1 kg.

The system is released from rest.

- (i) Find, in terms of m_1 and m_2 , the tension in the string.
- (ii) The pulley C will remain at rest if $\frac{2}{m_2} \frac{1}{m_1} = k$. Find the value of k.

(i)
$$m_1$$
 $T = m_1(p)$ 5

$$1 \text{ kg} \qquad T - g = 1(q)$$

$$m_2 \qquad m_2 g - 2T = m_2 \left\{ \frac{p+q}{2} \right\}$$

$$m_2 g - 2T = \frac{m_2}{2} \left\{ \frac{T}{m_1} + T - g \right\}$$

$$\frac{3m_2 g}{2} = 2T + \frac{m_2 T}{2m_1} + \frac{m_2 T}{2}$$

$$3m_1 m_2 g = 4m_1 T + m_2 T + m_1 m_2 T$$

$$T = \frac{3m_1 m_2 g}{4m_1 + m_2 + m_1 m_2}$$
5

(ii) C will remain at rest if $m_2g - 2T = 0$ or if $\frac{p+q}{2} = 0$ $m_2g = \frac{6m_1m_2g}{4m_1 + m_2 + m_1m_2}$ $4m_1 + m_2 + m_1m_2 = 6m_1$ $m_1m_2 = 2m_1 - m_2$ $1 = \frac{2}{m_2} - \frac{1}{m_1}$ $\Rightarrow k = 1$