7008 2009

(a) A straight vertical cliff is 200 m high.

A particle is projected from the top of the cliff.

The speed of projection is $14\sqrt{10}$ m/s at an angle α to the horizontal.

The particle strikes the level ground at a distance of 200 m from the foot of the cliff.

- (i) Find, in terms of α , the time taken for the particle to hit the ground.
- (ii) Show that the two possible directions of projection are at right angles to each other.

(i)
$$14\sqrt{10}\cos\alpha t = 200$$

$$t = \frac{200}{14\sqrt{10}\cos\alpha}$$
5

(ii)
$$14\sqrt{10}\sin\alpha t - \frac{1}{2}gt^2 = -200$$

$$14\sqrt{10}\sin\alpha \cdot \left(\frac{200}{14\sqrt{10}\cos\alpha}\right) - \frac{1}{2}g\left(\frac{200}{14\sqrt{10}\cos\alpha}\right)^2 = -200$$

$$200\tan\alpha - \frac{100}{\cos^2\alpha} = -200$$

$$200\tan\alpha - 100(1 + \tan^2\alpha) = -200$$

$$\tan^2\alpha - 2\tan\alpha - 1 = 0$$

$$\tan^2\alpha - 2\tan^2\alpha - 2\tan^$$

20