- 2008 6.
- (a) A particle of mass 5 kg is suspended from a fixed point by a light elastic string which hangs vertically. The elastic constant of the string is 500 N/m. The mass is pulled down a vertical distance of 20 cm from the equilibrium position and is then released from rest.
 - (i) Show that the particle moves with simple harmonic motion.
 - (ii) Find the speed and acceleration of the mass 0.1 seconds after it is released from rest.
- (i) Equilibrium position:

$$T_0 = kd$$
 and $T_0 = 5g$

$$\Rightarrow d = \frac{5g}{k} = \frac{5g}{500} \text{ or } \frac{g}{100}$$

Displaced position:

Force in dirn. of x inc. =
$$5g - 500(d + x)$$

= $5g - 5g - 500x$
= $-500x$

Acceleration =
$$-\frac{500x}{5} = -100x$$

 \Rightarrow S.H.M. about $x = 0$ with $\omega = 10$

(ii) amplitude = 0.2

$$x = a \cos \omega t$$

$$= 0.2 \cos 1 = 0.10806$$
5

$$v = \omega \sqrt{a^2 - x^2}$$
= $10\sqrt{0.2^2 - 0.10806^2}$
= 1.68 m/s

acceleration =
$$\omega^2 x$$

= $100(0.10806)$
= 10.8 m/s^2

5

5

5

5

25