(b) A smooth sphere A moving with speed u, collides with an identical smooth sphere B which is at rest.

5

A B B 45° u

The direction of motion of A, before impact, makes an angle of 45° with the line of centres at the instant of impact.

The coefficient of restitution between the spheres is e.

Show that the direction of motion of A is deflected through an angle α where

$$\tan \alpha = \frac{1+e}{3-e}.$$

PCM
$$m(u\cos 45) + m(0) = mv_1 + mv_2$$
 5

NEL $v_1 - v_2 = -e(u\cos 45 - 0)$ 5

$$\Rightarrow v_1 = \frac{u}{2\sqrt{2}}(1 - e)$$
 5

$$\tan(\alpha + 45) = \frac{u\sin 45}{v_1}$$

$$= \frac{\frac{u}{\sqrt{2}}}{\frac{u}{2\sqrt{2}}(1 - e)}$$

$$\frac{\tan \alpha + 1}{1 - \tan \alpha} = \frac{2}{1 - e}$$
 5

$$\tan \alpha + 1 - e \tan \alpha - e = 2 - 2 \tan \alpha$$

$$(3 - e) \tan \alpha = 1 + e$$

$$\tan \alpha = \frac{1 + e}{3 - e}$$
 5