A train of mass 200 tonnes moves along a straight level track against a resistance of $400v^2$, where v m/s is the speed of the train. The engine exerts a constant power of P kW.

The acceleration of the train is $\frac{8000 - v^3}{500v}$.

- (i) Find the value of P.
- (ii) The train travels a distance 69.07 m while its speed increases from 10 m/s to v_1 m/s. Find the value of v_1 .

(i)
$$T = \frac{1000P}{v}$$
Force = Mass × Acceleration
$$\frac{1000P}{v} - 400v^{2} = 200000 \left(\frac{8000 - v^{3}}{500v} \right)$$

$$1000P - 400v^{3} = 3200000 - 400v^{3}$$

$$P = 3200$$
5
$$v \frac{dv}{ds} = \frac{8000 - v^{3}}{500v}$$

$$\int_{10}^{v_{1}} \frac{500v^{2}}{8000 - v^{3}} dv = \int_{0}^{69.07} dx$$
5
$$\left[-\frac{500}{3} \ln(8000 - v^{3}) \right]_{10}^{v_{1}} = \left[x \right]_{0}^{69.07}$$
5
$$-\frac{500}{3} \ln(8000 - v_{1}^{3}) + \frac{500}{3} \ln(7000) = 69.07$$

$$\frac{500}{3} \ln \left(\frac{7000}{8000 - v_{1}^{3}} \right) = 69.07$$

$$v_{1}^{3} = 3374.936276$$

$$v_{1} = 15.0 \text{ m/s}$$
5

30