(b) A uniform disc of radius 25 cm and mass 100 kg rests in a vertical plane perpendicular to a kerb stone 10 cm high.

A force F is applied to the disc at an angle θ to the horizontal, where $\tan \theta = \frac{4}{3}$.

- (i) Draw a diagram showing all the forces acting on the disc.
- (ii) Find the least value of F required to raise the disc over the kerb stone.

$$\sin \alpha = \frac{15}{25} = \frac{3}{5}$$

horiz

$$R\cos\alpha = F\cos\theta$$

$$R = \frac{3}{4}F$$

vert

$$R\sin\alpha + F\sin\theta + N = 100g$$

$$N = 0$$

$$\left(\frac{3}{4}F\right)\left(\frac{3}{5}\right) + F\left(\frac{4}{5}\right) = 100g$$

$$F = 80g$$
 or 784 N

5

25