A particle of mass m kg is suspended from a fixed point p by a light elastic (a) string.

The extension of the string is d when the particle is in equilibrium. The particle is then displaced vertically from the equilibrium position a distance not greater than d and is then released from rest.

- (i) Show that the motion of the particle is simple harmonic.
- Find, in terms of d, the period of the motion. (ii)
- (*i*) Equilibrium position:

$$T_0 = kd \implies mg = kd$$

5

Displaced position:

Force in dirn. of x inc. = mg - k(d + x)= mg - kd - kx

$$-mg-\kappa a - kx$$

Acceleration = $-\frac{kx}{m}$

$$\Rightarrow$$
 S.H.M. about $x = 0$ with $\omega = \sqrt{\frac{k}{m}}$

5

5

$$=\sqrt{\frac{k}{m}}$$

(ii)

Period =
$$\frac{2\pi}{\omega}$$

= $2\pi\sqrt{\frac{m}{k}}$
= $2\pi\sqrt{\frac{d}{g}}$

5

25