(b) A smooth sphere A, of mass 4 kg, moving with speed u, collides with a stationary smooth sphere B of mass 8 kg. The direction of motion of A, before impact, makes an angle α with the line of centres at impact.

5

5

5

The coefficient of restitution between the spheres is $\frac{1}{2}$.

Find in terms of u and α

- (i) the speed of each sphere after the collision
- (ii) the angle through which the 4 kg sphere is deflected as a result of the collision
- (iii) the loss in kinetic energy due to the collision.

(i) PCM
$$4(u\cos\alpha) + 8(0) = 4v_1 + 8v_2$$

NEL $v_1 - v_2 = -\frac{1}{2}(u\cos\alpha - 0)$

$$\Rightarrow$$
 $v_1 = 0$ and $v_2 = \frac{1}{2}u\cos\alpha$

Speed of A =
$$u \sin \alpha$$

Speed of B = $\frac{1}{2}u \cos \alpha$

(iii) KE before
$$=\frac{1}{2}(4)u^2 = 2u^2$$

Angle = $90 - \alpha$

(ii)

KE after
$$=\frac{1}{2}(4)\{u \sin \alpha\}^2 + \frac{1}{2}(8)\{\frac{1}{2}u \cos \alpha\}^2$$

 $=2u^2 \sin^2 \alpha + u^2 \cos^2 \alpha$

Loss in KE =
$$2u^2 - 2u^2 \sin^2 \alpha - u^2 \cos^2 \alpha$$

= $2u^2 (1 - \sin^2 \alpha) - u^2 \cos^2 \alpha$
= $u^2 \cos^2 \alpha$

30