1999

- A uniform rod of mass m is free to rotate in a vertical plane about an axis which is perpendicular to the rod and 0.32 m from its centre of gravity. For small oscillations the rod has the same period as a simple pendulum of length 0.5 m.
 - (i) Find the length of the rod.
 - (ii) For what other distance between the axis and the centre of gravity will the period be the same?
 - (iii) Where must the axis be located to give a minimum period?

(i)
$$I = \frac{1}{3} \text{ m } \ell^2 + \text{ m } (0.32)^2$$

$$Mh = \text{ m } (0.32)$$

$$2\pi\sqrt{\frac{I}{Mgh}} = 2\pi\sqrt{\frac{L}{g}}$$

$$\frac{1}{3}m\ell^2 + m(0.32)^2$$

$$\frac{\frac{1}{3}m\ell^2 + m(0.32)^2}{m(0.32)} = 0.5$$

$$\ell = 0.416$$

5 Length of the rod = 0.83 m

(ii)
$$\frac{\frac{1}{3}m\ell^2 + mx^2}{mx} = 0.5$$

$$x^2 - 0.5 x + 0.0576 = 0$$

$$x = 0.32 \text{ or } x = 0.18$$

other distance = 18 cm

 $x = 0.24 \,\mathrm{m}$ or 24 cm 16

5