1999

6 (a) A particle moves with simple harmonic motion of period $\frac{\pi}{2}$. Initially it is 8 cm from the centre of the motion and moving away from the centre with a speed of $4\sqrt{2}$ cm/s. Find an equation for the position of the particle in time t seconds.

	Period	=	$\frac{2\pi}{\omega}$	
	$\frac{\pi}{2}$	i - s	$\frac{2\pi}{\omega}$	
\Rightarrow	φ ω	=	4	5

$$v^{2} = \omega^{2}(a^{2} - x^{2})$$
 $32 = 16(a^{2} - 64)$

$$\Rightarrow a = \sqrt{66}$$
5

$$x = 8, t = 0$$
 \Rightarrow $x = a \sin(\omega t + \varepsilon)$
 $8 = \sqrt{66} \sin \varepsilon$
 \Rightarrow $\varepsilon = 1.4 \text{ radians}$

Equation
$$x = \sqrt{66} \sin(4t + 1.4)$$

5

Alternative method for finding the amplitude:

$$x = a\sin(\omega t + \varepsilon) \implies 8 = a\sin\varepsilon$$

$$v = a\omega\cos(\omega t + \varepsilon) \implies \sqrt{2} = a\cos\varepsilon$$

$$a^2\sin^2\varepsilon + a^2\cos^2\varepsilon = 64 + 2$$

$$a^2 = 66$$

$$\Rightarrow a = \sqrt{66}$$