1998

8 (a) Prove that the moment of inertia of a uniform rod [ab] of mass m and length 2ℓ about an axis through a, perpendicular to the rod, is $\frac{4}{3}m\ell^2$.

Let $m_1 = mass per unit length$

Mass of rod $m = 2m_1\ell$

Consider an element of the rod of width Δx , a distance x

from the axis.

Mass of the element = $m_1 \Delta x$

Moment of inertia
$$= \int_{0}^{2\ell} m_1 x^2 dx$$
$$= \frac{m_1}{3} \left[x^3 \right]_{0}^{2\ell}$$
$$= \frac{8m_1 \ell^3}{3}$$
$$= \frac{4m \ell^2}{3}$$

5

5

5

5

20

8 (b) A lamina is rotating with angular velocity ω about an axis perpendicular to its plane. If the moment of inertia of the lamina about the axis is I, prove that the kinetic energy is $\frac{1}{2}I\omega^2$.

Consider a particle of the body of mass m, a distance r from the axis.

Kinetic Energy of particle = $\frac{1}{2}$ mv² = $\frac{1}{2}$ mr² ω ²

Kinetic Energy of the lamina $= \sum_{\frac{1}{2}} \frac{1}{2} mr^2 \omega^2$ $= \frac{1}{2} \omega^2 \sum_{\frac{1}{2}} mr^2$ $= \frac{1}{2} I \omega^2$

5

5

10