
1998

Two equal uniform rods [ab] and [bc], each of weight W, are freely jointed at b. An inextensible string connects a to the midpoint of [bc]. When the string is taut the angle bca is θ . The rods are placed in a vertical plane with a and c on a smooth horizontal surface.

Prove that the tension in the string is $\frac{W}{4}\sqrt{1+9\cot^2\theta}$.

Resolve vertically

$$R + S = 2W$$

Moments about a for system
$$W(1) + W(3) = S(4)$$

$$W(1) + W(3) = S(4)$$

$$\Rightarrow$$
 S = W and R = W

Moments about b for ba

Tcos
$$\alpha$$
.2 ℓ sin θ + W. ℓ cos θ = Tsin α .2 ℓ cos θ + R.2 ℓ cos θ

$$2T\cos\alpha . tan\theta + W = 2T\sin\alpha + 2W$$
 (: R = W)

$$\Rightarrow \qquad \text{Tcos } \alpha.t \text{an } \theta = \frac{W}{2} + \text{T sin} \alpha \qquad \dots \text{eq (1)}$$

Moments about b for bc

Tcos
$$\alpha$$
. ℓ sin θ + Tsin α . ℓ cos θ + W. ℓ cos θ = S. 2ℓ cos θ

$$T\cos\alpha.tan\theta + T\sin\alpha + W = 2W \quad (\because S = W)$$

$$\Rightarrow$$
 Tcos α.tanθ = W - T sinα eq (2)

Solve equations (1) and (2)

$$T \sin \alpha = \frac{W}{4}$$
 and $T \cos \alpha = \frac{3W}{4 \tan \theta}$

$$\Rightarrow T^2 \sin^2 \alpha + T^2 \cos^2 \alpha = \frac{W^2}{16} + \frac{9W^2}{16\tan^2 \theta}$$

$$\Rightarrow \qquad T = \frac{W}{4} \sqrt{1 + 9 \cot^2 \theta}$$

5,5

10

5

5

5,5

5