

- 6 (b) An elastic string of natural length one metre is extended 20 cm by a particle attached to its end and hanging freely. The particle is then pulled down a further distance of 40 cm and released.
 - (i) Show that the particle moves with simple harmonic motion when the string is taut
 - (ii) Find the height above the equilibrium position to which the particle will rise.
- (i) Equilibrium position

$$T_0 = mg$$

 $k(0.2) = mg$
 $k = 5mg$ or 49m

Displaced position

Force in direction of x increasing =
$$mg - k(0.2 + x)$$

= $mg - mg - 5mgx$
= $-5mgx$

acceleration =
$$-5gx$$

= $-49x$

- \Rightarrow S.H.M. about x = 0 with $\omega = 7$
- (ii) Find velocity of particle when string is 1 m long

$$v = \omega \sqrt{a^2 - x^2}$$

$$= 7\sqrt{(0.4)^2 - (0.2)^2}$$

$$= 7\sqrt{0.12} \quad \text{or} \quad 2.43$$

Find distance

$$v^2 = u^2 + 2as$$

0 = 49(0.12) + 2(-9.8)s

 \Rightarrow s = 0.3 \Rightarrow 0.5 m above the equilibrium position

5

5

5

5