

6 (a) Define Simple Harmonic Motion.

The distance, x, of a particle from a fixed point, o, is given by $x = 7\sin \omega t + 24\cos \omega t$, ω being a constant.

- (i) Show that the particle is describing simple harmonic motion about o.
- (ii) Calculate the amplitude of the motion.

The motion of a particle is simple harmonic motion if its acceleration towards a particular point is proportional to its displacement from that point.

10

(i)
$$x = 7 \sin \omega t + 24 \cos \omega t$$

$$\frac{dx}{dt} = 7\omega \cos \omega t - 24\omega \sin \omega t$$

5

$$\frac{d^2x}{dt^2} = -7\omega^2 \sin\omega t - 24\omega^2 \cos\omega t$$

5

$$= -\omega^2 x$$

5

$$\therefore$$
 S.H.M. about $x = 0$

)

(ii) amplitude =
$$\sqrt{7^2 + 24^2}$$

= 25

5

30