10 (b)	A particle moves in a straight line. The initial speed is u and the retardation
	is kv^3 , where v is the speed at the time t . If s is the distance travelled in time t , prove

$$(i) v = \frac{u}{1 + ksu}$$

(ii)
$$t = \frac{ks^2}{2} + \frac{s}{u}.$$

$$v \frac{dv}{ds} = -kv^3$$

$$\int \frac{dv}{-v^2} = k \int ds$$

$$\frac{1}{v} = ks + C$$

$$v = u$$
 when $s = 0 \implies \frac{1}{u} = C$

$$\therefore \frac{1}{v} = ks + \frac{1}{u}$$

$$= \frac{ksu + 1}{u}$$

$$\Rightarrow$$
 $v = \frac{u}{ksu + 1}$

$$\frac{ds}{dt} = \frac{u}{ksu + 1}$$

$$\int (ksu + 1) ds = u \int dt$$

$$\frac{1}{2}ks^2u + s = ut + A$$

$$t = 0$$
 when $s = 0$ \Rightarrow $0 = A$

$$\therefore \quad \frac{1}{2}ks^2u + s = ut$$

$$\Rightarrow$$
 $t = \frac{ks^2}{2} + \frac{s}{u}$

-